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ABSTRACT
Sequential recommender systems seek to exploit the order of users’
interactions, in order to predict their next action based on the con-
text of what they have done recently. Traditionally, Markov Chains
(MCs), and more recently Recurrent Neural Networks (RNNs) and
Self Attention (SA) have proliferated due to their ability to cap-
ture the dynamics of sequential patterns. However a simplifying
assumption made by most of these models is to regard interac-
tion histories as ordered sequences, without regard for the time
intervals between each interaction (i.e., they model the time-order
but not the actual timestamp). In this paper, we seek to explicitly
model the timestamps of interactions within a sequential modeling
framework to explore the influence of different time intervals on
next item prediction. We propose TiSASRec (Time Interval aware
Self-attention based sequential recommendation), which models
both the absolute positions of items as well as the time intervals
between them in a sequence. Extensive empirical studies show
the features of TiSASRec under different settings and compare the
performance of self-attention with different positional encodings.
Furthermore, experimental results show that our method outper-
forms various state-of-the-art sequential models on both sparse
and dense datasets and different evaluation metrics.
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1 INTRODUCTION
Modeling sequential interactions is essential in applications like e-
commerce, friend suggestion, news recommendation, etc. There are

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WSDM ’20, February 3–7, 2020, Houston, TX, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6822-3/20/02. . . $15.00
https://doi.org/10.1145/3336191.3371786

Figure 1: Given the same item sequence with different time
intervals, our model will yield a different prediction for the
next item.

two important lines of work that seek to mine users’ interaction his-
tories: temporal recommendation and sequential recommendation.
Temporal recommendation [17, 29, 31, 35] focuses on modeling
absolute timestamps to capture the temporal dynamics of users and
items. For example, the popularity of an item might change during
different time slots, or users’ average ratings might increase or
decrease over time. These models are useful when exploring the
temporal changes in datasets. Instead of sequential patterns, they
consider temporal patterns which are dependent on the time.

Most previous sequential recommenders sort items by interac-
tion timestamps, and focus on sequential pattern mining to predict
the next item likely to be interacted with. One typical solution
is Markov Chain based approaches [7, 8, 21], where an L-order
Markov chain makes recommendations based on the L previous
actions. Markov Chain based approaches have been successfully
adopted to capture short-term item transitions for recommenda-
tion [14]. They perform well in high-sparsity settings by making
strong simplifying assumptions but may fail to capture the intricate
dynamics in more complex scenarios. Recurrent Neural Networks
(RNNs) [11, 12] have also been applied in this setting. While RNN
models have long ‘memory’ across users’ preferences, they require
large amounts of data (and especially dense data) before they can
outperform simpler baselines. To tackle the shortcomings ofMarkov
Chain models and RNN-based models, inspired by Transformer [26]
for machine translation, [14] propose to apply self-attention mecha-
nisms to sequential recommendation problems. Self-attention based
models significantly outperform state-of-the-art MC/CNN/RNN-
based sequential recommendation methods.

Generally, previous sequential recommenders discard times-
tamps and preserve only the order of items, that is, these methods
(implictly) assume that all adjacent items in a sequence have the
same time intervals. The factors that influence the next items are
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Figure 2: Time interval distribution of two datasets (exclud-
ing the interval of zero).

only the position and identity of the previous items. However, intu-
itively, items with more recent timestamps will have more influence
on the next item. For instance, two users have the same interaction
sequence but one of the users produced these interactions within
one day, while another user completed these interactions in one
month, therefore, the interactions of the two users should have
different impact on the next items even if they have the same se-
quential position. However, previous sequential recommendation
techniques view the two situations as the same because they only
consider the sequential position.

In this paper, we argue that user interaction sequences should
be modeled as a sequence with different time intervals. Figure 2
indicates that the interaction sequence has different time intervals,
some of which might be large. Previous work omitted these inter-
vals and their influence on the predicted item. To address these
above limitations, inspired by Self-Attention with Relative Posi-
tion Representations [22], we propose a time-aware self-attention
mechanism. This model not only considers the absolute positions
of items like SASRec [14], but the relative time intervals between
any two items. From our experiments, we observe that our model
outperforms state-of-the-art algorithms on both dense and sparse
datasets. Finally, our contributions are summarized as follows:

• We propose to view user’s interactions history as a sequence
with different time intervals, and model different time inter-
vals as relations between any two interactions.

• We combine the advantages of absolute position and rela-
tive time interval encodings for self-attention and design a
novel time interval aware self-attention mechanism to learn
the weight of different items, absolute positions and time
intervals to predict future items.

• We conduct thorough experiments to study the impact of
absolute positions and relative time intervals and different
components on the performance of TiSASRec, and show
that it outperforms state-of-the-art baselines in terms of two
ranking metrics.

2 RELATEDWORK
2.1 Sequential Recommendation
Sequential recommender systems mine patterns in user interaction
sequences. Some capture item-item transition matrices to predict
the next item. For instance, FPMC [21] models long-term prefer-
ences and dynamic transitions of users via matrix factorization and

a transition matrix. The transition matrix is a first-order Markov
Chain (MC) which only considers the relation between the current
and the previous item. Fossil [8] uses similarity-based methods and
high-order Markov Chains which assumes that the next item is
related to several previous items and [7] demonstrated that the
high-order MC based models have strong performance on sparse
datasets. CNN (Convolutional Neural Network) based methods
[24, 25] have also been proposed to consider several previous items
as an ‘image’ and mine transitions between items via a CNN at a
union-level. MARank [34] unifies both individual- and union-level
previous item transitions by combining the residual network and
multi-order attention. SHAN [33] models the previous several items
and a long history of a user via a two-layer attention mechanism
to obtain the short- and long-term preferences of a user.

RNNs (Recurrent Neural Network) based models like [3, 12, 13,
18] use RNNs to model entire user sequences. These methods per-
formwell on dense datasets, but generally exhibit poor performance
on sparse datasets.

2.2 Attention Mechanisms
Attention mechanisms have been shown to be effective in various
tasks such as image captioning [32] and machine translation [2].
Essentially the idea behind attention mechanisms is that outputs
depend on specific parts of an input that are relevant. Such mecha-
nisms can calculate weights of inputs and make models more inter-
pretable. Recently, attention mechanisms have been incorporated
into recommender systems [5, 28, 30]. A purely attention-based
sequence-to-sequence method, Transformer [26], achieved state-
of-the-art performance on machine translation tasks. Transformer
uses the scaled dot-product attention which is defined as:

Attention(Q,K,V) = softmax
(
QKT
√
d

)
V (1)

where Q,K,V represent queries, keys and values respectively. In
self-attention, the three inputs usually use the same object.

The self-attentionmodules of Transformer have also been used in
recommender systems [14] and achieved state-of-the-art results on
sequential recommendation. Since the self-attention model doesn’t
include any recurrent or convolutional module, it is not aware of
the positions of previous items. One solution is to add positional
encodings to the inputs, which can be a deterministic function
or learnable positional embedding [23, 26]. Another solution uses
relative position representations [4, 22]. They model the relative
positions between two input elements as pairwise relationships.
Inspired by self-attention with relative positions, we combine the
absolute positions and relative positions to design time-aware self-
attention which models items’ positions and time intervals.

3 PROPOSED METHOD
In this section, we first formulate our next item recommendation
problem and then describe our approaches to obtain time intervals
and components of TiSASRec, which includes personalized time
interval processing, an embedding layer, time-aware self-attention
blocks, and a prediction layer. We embed items, their absolute
positions, and relative time intervals. The attention weights are
calculated by these embeddings. As shown in Figure 1, our model



Figure 3: The overall framework of TiSASRec. We only demonstrate the components corresponding to time intervals and
self-attention.

Table 1: Notation.

Notation Description

U , I User and Item set
Su historical interaction sequence for user u
Tu timestamp sequence of user u corresponding to Su
Ru time interval matrix between any two items.
n maximum sequence length
d latent vector dimension
Mu time interval matrix after personalized processing
MI item embedding matrix
MP
K ,M

P
V embedding matrix of position for key and value

MR
K ,M

R
V embedding matrix of intervals for key and value

Zt output of model as time step t

will have different predicted items given different time intervals
even if several previous items are the same. To learn the parameters,
we employ a binary cross entropy loss as our objective function.
The goal of TiSASRec is to capture sequence patterns and explore
influence of time intervals on the sequential recommendationwhich
is an unexplored area.

3.1 Problem Formulation
Let U and I represent the user and item set respectively. In the
setting of time-aware sequential recommendation, for each user
u ∈ U , we are given the user’s action sequence, which is denoted
as Su = (Su1 , S

u
2 , . . . , S

u
|Su |) where S

u
t ∈ I and time sequence Tu =

(Tu1 ,T
u
2 , . . . ,T

u
|Tu |) corresponding to the action sequence. During

the training process, at time step t , the model predicts the next
item depending on the previous t items and the time intervals rui j
between item i and j . Our model’s input is (Su1 , S

u
2 , . . . , S

u
|Su |−1) and

time intervals Ru between any two items in the sequence, where
Ru ∈ N( |S

u |−1)×( |Su |−1). Our desired output is the next item at
every time: (Su2 , S

u
3 , . . . , S

u
|Su |).

3.2 Personalized Time Intervals
We transform the training sequence (Su1 , S

u
2 , . . . , S

u
|Su |−1) into a

fixed-length sequence s = (s1, s2, . . . , sn ), where n represents the
maximum length that we consider. If the sequence length is greater
than n, we only consider the most recent n actions. If the sequence
length is less thann, we add padding items to the left until the length
is n. Similarly for the time sequence Tu = (Tu1 ,T

u
2 , . . . ,T

u
|Tu |−1),

we also consider a fixed-length time sequence t = (t1, t2, . . . , tn ).
If the time sequence length is less than n, we pad it with the first
time stamp Tus1 where s1 is not a padded item. Otherwise, we only
consider the first n time stamps.

We model time intervals in an interaction sequence as the rela-
tion between two items. Some users havemore frequent interactions
while others do not and we are only concerned about the relative
length of time intervals in one user sequence. Hence, for all time
intervals, we divide by the shortest time interval (other than 0) in a
user sequence to get the personalized intervals. Specifically, giving
the fixed-length time sequence t = (t1, t2, . . . , tn ) of useru, the time
intervals of two items i and j is |ti − tj | and the time interval set (ex-
cept for 0) of user u is Ru . We denote the minimum time interval of
a user as rumin = min(Ru ). The scaled time intervals rui j =

⌊
|ti−tj |
rumin

⌋
,

where rui j ∈ N. Hence, the relation matrixMu ∈ Nn×n of user u is:

Mu =


ru11 ru12 . . . ru1n
ru21 ru22 . . . ru2n
. . . . . . . . . . . .

run1 run2 . . . runn

 (2)

The maximum relative time interval between two items we con-
sider is clipped to k . We hypothesize that precise relative time
intervals are not useful beyond a certain threshold. Clipping the
maximum intervals also avoids sparse relation encodings and en-
ables the model to generalize to time intervals not seen during train-
ing. Hence, the clipped matrix isMu

clipped = clip(Mu ), where the clip
operation of the matrix applies to every element rui j = min(k, rui j ).



3.3 Embedding Layer
We create an embedding matrix MI ∈ R |I |×d for items, where d
is the latent dimension. A constant zero vector 0 is used as the
embedding for the padding items. The embedding look-up opera-
tion retrieves the previous n items’ embeddings, and stacks them
together resulting in a matrix EI ∈ Rn×d :

EI =


ms1
ms2
...

msn

 (3)

Following [22], we use two distinct learnable positional embed-
ding matrices MP

K ∈ Rn×d , MP
V ∈ Rn×d for keys and values in

the self-attention mechanism respectively. This method is more
suitable for use in the self-attention mechanism without requiring
additional linear transformations [22]. After retrieval, we get the
embedding EPK ∈ Rn×d and EPV ∈ Rn×d :

EPK =


pk1
pk2
. . .

pkn

 EPV =


pv1
pv2
. . .

pvn

 (4)

Similar to the positional embedding, relative time interval embed-
ding matrices areMR

K ∈ Rk×d ,MR
V ∈ Rk×d for keys and values in

self-attention. After retrieving the clipped relation matrixMu
clipped ,

we get the embedding matrix ERK ∈ Rn×n×d and ERV ∈ Rn×n×d :

ERK =


rk11 rk12 . . . rk1n
rk21 rk22 . . . rk2n
. . . . . . . . . . . .

rkn1 rkn2 . . . rknn

 E
R
V =


rv11 rv12 . . . rv1n
rv21 rv22 . . . rv2n
. . . . . . . . . . . .

rvn1 rvn2 . . . rvnn


(5)

The two relative time interval embeddings are symmetric matrices,
and elements on the main diagonal are all zeros.

3.4 Time Interval-Aware Self-Attention
Inspired by relative position self-attention mechanisms [4, 22], we
propose an extension to self-attention to consider the different
time intervals between two items in a sequence. However, only
considering the time intervals is not enough, because the user
interaction sequence might have many instances with the same
timestamp. Under this condition, the model would become self-
attention without any position or relation information. So, we also
consider the position of items in a sequence.

Time Interval-Aware Self-attention Layer: For each input
sequence EI = (ms1 ,ms2 , . . . ,msn ) of n items where msi ∈ Rd ,
compute a new sequence Z = (z1, z2, . . . , zn ), where zi ∈ Rd .
Each output element, zi , is computed as a weighted sum of linearly
transformed input elements and the relation/position embeddings:

zi =
n∑
j=1

αi j
(
msjW

V + rvi j + p
v
j

)
(6)

whereWV ∈ Rd×d is input projection for value.

Each weight coefficient αi j is computed using a softmax function:

αi j =
exp ei j∑n

k=1 exp eik
(7)

And ei j is computed using a compatibility function that considers
inputs, relations and positions:

ei j =
msiW

Q
(
msjW

K + rki j + p
k
j

)T
√
d

, (8)

whereWQ ∈ Rd×d ,W K ∈ Rd×d are input projections for a query
and key respectively. The scale factor

√
d is used to avoid large

values of the inner product, especially when the dimension is high.
Causality: Due to the nature of sequences, the model should

only consider the first t items when predicting the (t + 1)st item.
However, the t-th output of the time-aware self-attention layer
contains all input information. Hence, as in [14], we modify the
attention by forbidding all links between Qi and Kj (j > i), where
Qi =msiW

Q , Kj =msjW
K + rki j + p

k
j .

Point-Wise Feed-Forward Network: Though our time inter-
val aware attention layer is able to incorporate all previous items, ab-
solute position, and relative time informationwith adaptive weights,
it does so via a linear combination. After each time-aware attention
layer, we apply two linear transformations with a ReLU activation
in between, which could endow non-linearity to the model:

FFN(zi ) = max(0, ziW1 + b1)W2 + b2 (9)

where W1,W2 ∈ Rd×d and b1,b2 ∈ Rd . While the linear trans-
formations are the same across different items, they use different
parameters from layer to layer.

As discussed in [14], after stacking the self-attention layers and
feed-forward layers, more problems will emerge including over-
fitting, unstable training processes (e.g. vanishing gradients), and
requiring more training time. Like [26] and [14], we also adopt
layer normalization, residual connections and dropout regulariza-
tion techniques to solve these problems:

Zi = zi + Dropout(FFN(LayerNorm(zi ))) (10)

Layer normalization is used to normalize the inputs across fea-
tures (i.e., zero-mean and unit-variance). According to [1], this can
stabilize and accelerate neural network training. Assume x is a
vector containing all features of the sample, layer normalization is
defined as:

LayerNorm(x) = α ⊙
x − µ

√
σ 2 + ϵ

+ β (11)

where ⊙ is an element-wise product, µ and σ are the mean and
variance of x, α and β are learned scaling factors and bias terms.

3.5 Prediction layer
After stacked self-attention blocks, we get the combined represen-
tation of items, positions and time intervals. To predict the next
item, we employ a latent factor model to compute users’ preference
score of item i as follows:

Ri,t = ZtMI
i (12)

where MI
i ∈ Rd is the embedding of item i and Zt is the repre-

sentation given the first t items (i.e., s1, s2, . . . , st ) and their time
intervals (i.e., ru1(t+1), r

u
2(t+1), . . . , r

u
t (t+1)) between the (t +1)th item.



3.6 Model Inference
Recall that we convert item sequences (Su1 , S

u
2 , . . . , S

u
|Su |−1) and

time sequence Tu = (Tu1 ,T
u
2 , . . . ,T

u
|Tu |−1) to a fixed length se-

quence s = (s1, s2, . . . , sn ) and t = (t1, t2, . . . , tn ) respectively. We
define o = (o1,o2, . . . ,on ) as the expected output given a time and
item sequence. Element oi of o is:

oi =


< pad > if si is a padding item
st+1 1 ≤ t < n

Su
|Su | t = n

(13)

where < pad > denotes a padding item. Because user interactions
are implicit data, we cannot directly optimize the preference score
Ri,t . The goal of our model is to provide a ranked item list. Hence,
we adopt negative sampling to optimize the ranking of items. For
each expected positive output oi , we sample one negative item
o′i < Su to generate a set of pairwise preference orders D =
{(Su ,Tu ,o,o′)}. We transform model output scores into the range
(0, 1) by a sigmoid function σ (x) = 1/(1 + e−x ) and adopt binary
cross entropy as the loss function:

−
∑
Su ∈S

∑
t ∈[1,2, ...,n]

[
log(σ (rot ,t )) + log(1 − σ (ro′t ,t ))

]
+ λ | |Θ| |2F

(14)
where Θ = {MI ,MP

K ,M
P
V ,M

R
K ,M

R
V } is the set of embedding ma-

trices, | | · | |F denotes the Frobenius norm, λ is the regularization
parameter. Note that we mask the loss of the padding item.

The proposed model is optimized by the Adam optimizer [15].
Since each training sample D = {(Su ,Tu ,o,o′)} could be con-
structed independently, we apply mini-batch SGD to speed up the
training efficiency.

4 EXPERIMENTS
In this section, we introduce our experimental setup and present
our empirical results. Our experiments are designed to answer the
following research questions:

RQ1: Can our proposedmethod outperform state-of-the-art base-
lines for sequential recommendation tasks?

RQ2: Which of absolute positions or relative time intervals is
more important for sequential recommendation?

RQ3: How do the parameters affect model performance, such as
the number of dimensions, the maximum length of sequences and
the maximum time intervals we consider?

RQ4: Are personalized time intervals useful in this model?

4.1 Datasets
We evaluate our methods on six datasets from three real world
platforms. These datasets have different domains, size and sparsity,
and all are publicly available:

• MovieLens: A widely used benchmark dataset for evaluat-
ing collaborative filtering algorithms. We use the version
(MovieLens-1M) that includes 1 million user ratings.

• Amazon: A series of datasets introduced in [9, 19], com-
prising large corpora of product reviews crawled from Ama-
zon.com.We consider four categories, ‘CDs andVinyl’, ‘Movies
and TV’, ‘Beauty’ and ‘Video Games’. This dataset is highly
sparse.

Table 2: Basic dataset statistics.

Dataset #users #items
avg.

actions
/user

#actions

MovieLens-1m 6,040 3,416 163.5 0.987M
Amazon CDs&Vinyl 26,875 42,779 24.35 0.65M
Amazon Movies&TV 40,928 37,564 25.55 1.05M
Amazon Beauty 51,369 19,369 4.39 0.225M
Amazon Game 30,935 12,111 6.46 0.2M
Steam 114,796 8,648 7.58 0.87M

Table 3: Hyperparameter settings.

Dataset
max

sequence
length

max
time

intervals
regularization

MovieLens-1m 50 2048 0.00005
Amazon CDs&Vinyl 50 512 0.00005
Amazon Movies&TV 50 512 0
Amazon Beauty 25 512 0.00005
Amazon Game 25 256 0.00005
Steam 25 256 0

• Steam: This dataset was crawled from Steam, a large online
video game distribution platform. It was introduced in [14]
and includes information like users’ play hours, media score,
and developer.

All of these datasets contain the timestamps or specific date of
interactions. To preprocess we follow the procedure from [7, 14, 21].
For all datasets, we treat the presence of a review or rating as
implicit feedback (i.e., the user interacted with the item) and order
the items by timestamps. For all users we subtract the smallest
timestamp in their own sequence to let timestamps start from zero.
We filter out cold-start users and items with fewer than 5 actions.
Following [14], we use the most recent item for testing, the second
recent item for validation and the remaining items for training.
Dataset statistics are shown in Table 2. MovieLens-1m is the most
dense dataset which has the longest average actions and the least
users and items. Amazon Beauty and Games have the fewest actions
per user.

4.2 Evaluation Metrics
We adopt two common Top-Nmetrics, Hit Rate@10 and NDCG@10,
to evaluate recommendation performance [10]. Hit@10 counts the
rates of the ground-truth items among the top 10 items. NDCG@10
considers the position and assigns higher weights to higher po-
sitions. Following [16], for each user u, we randomly sample 100
negative items, and rank these items with the ground-truth item.
We calculate Hit@10 and NDCG@10 based on the rankings of these
101 items.



Table 4: Recommendation Performance. The best performing method in each row is boldfaced, and the second best method
in each row is underlined. Improvements are shown in the last column

Dataset Metric Pop BPR FPMC TransRec GRU4Rec+ Caser MARank TiSASRec Improvement

MovieLens-1m NDCG@10 0.2389 0.3421 0.3917 0.2488 0.4334 0.5011 0.5199 0.5706 9.75%
Hit@10 0.4386 0.5952 0.6182 0.4478 0.6522 0.7517 0.7652 0.8038 5.04%

Amazon CDs&Vinyl NDCG@10 0.1862 0.3626 0.3355 0.1893 0.2005 0.2285 0.4355 0.5047 15.89%
Hit@10 0.3335 0.5627 0.5122 0.3356 0.3536 0.3865 0.6464 0.7212 11.57%

Amazon Movies&TV NDCG@10 0.2723 0.3482 0.3376 0.2891 0.2987 0.3212 0.4568 0.4974 8.89%
Hit@10 0.4576 0.5537 0.5104 0.4793 0.4848 0.5015 0.6584 0.7125 9.21%

Amazon Beauty NDCG@10 0.1758 0.1523 0.179 0.1704 0.1743 0.1446 0.2127 0.2818 32.49%
Hit@10 0.3215 0.2554 0.2806 0.3016 0.3184 0.2639 0.3472 0.4345 25.14%

Amazon Game NDCG@10 0.23 0.2731 0.341 0.2292 0.2321 0.2661 0.4437 0.4797 8.11%
Hit@10 0.4006 0.4417 0.5222 0.3943 0.3971 0.4474 0.6498 0.7087 9.06%

Steam NDCG@10 0.4136 0.3598 0.4083 0.412 0.4138 0.4787 0.5135 0.5897 14.84%
Hit@10 0.6611 0.5941 0.6017 0.6594 0.6605 0.7135 0.751 0.8103 7.9%

4.3 Compared Methods
We compare TiSASRec with the following methods. These methods
include classic general recommendation (e.g. POP, BPR) without
considering sequential patterns, first-order Markov Chain-based
methods (e.g. FPMC, TransRec) and Neural Network (NN) based
methods (e.g. GRU4Rec+, Caser, MARank).

• POP. All items are ranked by their popularity in all users’
training sets, and the popularity is calculated by counting
the number of actions.

• BPR[20]. Bayesian personalized ranking is a classic method
for general item recommendation. Matrix factorization is
used as the recommender.

• FPMC[21]. This method combines matrix factorization and
first-order Markov Chains, which capture long-term prefer-
ences and dynamic transitions respectively.

• TransRec[7]. This method models each user as a tanslation
vector from item to item. It is a first-order method to capture
transitions.

• GRU4Rec+[11]. Models user action sequences for session-
based recommendation. ComparedwithGRU4Rec, GRU4Rec+
adopts a different loss function and sampling strategy that
shows significant improvement on GRU4Rec.

• Caser [24]. Embeds a sequence of recent items into an ‘im-
age’ in the time and latent spaces. This method can capture
high-order Markov chains considering the L most recent
items.

• MARank [34]. A state-of-the-art model that was proposed
recently. This method considers themost recent items and ap-
plies multi-order attention to capture individual- and union-
level item dependency.

SASRec [14] can be viewed as a method which only considers
the absolute position and will be discussed and compared with our
model in Section 4.6. Other sequential recommendation methods
(e.g. PRME [6], HRM [27], Fossil [8], GRU4Rec[12]) have been out-
performed by the baselines above, so we omit comparison against
them.

For fair comparison, we implement BPR, FPMC, TransRec using
Tensorflow with an Adam optimizer. For GRU4Rec+, Caser, MARank,

we use code provided by the authors.We search latent dimensions in
{10, 20, 30, 40, 50}, regularization hyperparameters in {0.0001, 0.001,
0.01, 0.1, 1} and learning rate in {0.1, 10−2, . . . , 10−4}. For all other
parameters, we use the default settings according to the respective
papers. We tune hyper-parameters using the validation set, and
terminate training if validation performance doesn’t improve for
20 epochs.

4.4 Implementation Details
We implement TiSASRec with tensorflow and fine-tune hyperpa-
rameters on our validation set. We use two time interval aware self-
attention layers, and learned positional and interval embeddings
and shared item embeddings in the embedding layer and prediction
layer. The learning rate is 0.001, batch size is 128, dropout rate is
0.2 for all datasets. The rest of our parameter settings are shown in
Table 3. All experiments are conducted with a single GTX-1080 Ti
GPU.

4.5 Recommendation Performance
Table 4 shows the recommendation performance of all methods on
the six datasets (RQ1). Among the baseline methods, MARank [34]
has state-of-the-art performance compared with other baselines.
MARank can capture individual-level, union-level user interactions
and tackle sparse datasets well. For dense datasets, neural network
based methods (i.e., GRU4Rec+, Caser) have obviously better perfor-
mance than Markov chain-based methods because these methods
have stronger ability to capture long-term sequential patternswhich
is important for dense datasets. Since Markov chain-based methods
(i.e., FPMC, TransRec) focus on dynamic transition of items, they
perform better on sparse datasets.

TiSASRec improves over the best baseline methods on all dense
and sparse datasets with respect to the two metrics. On the one
hand, our model takes advantage of the attention mechanism which
can adapt weights according to different items, absolute positions
and time intervals, while the former models only consider the first
two. On the other hand, TiSASRec takes advantage of the attention
mechanism, as discussed in [14], it can adaptively attend on items



Table 5: Comparison between time intervals and absolute po-
sitions.We highlight the best results by underline except for
TiSASRec.

Dataset Metric SASRec TiSASRec-R TiSASRec

MovieLens NDCG@10 0.5524 0.5648 0.5706
Hit@10 0.7929 0.8031 0.8038

CDs&Vinyl NDCG@10 0.4880 0.4978 0.5047
Hit@10 0.7001 0.7176 0.7212

Movies&TV NDCG@10 0.4882 0.4853 0.4974
Hit@10 0.7035 0.701 0.7125

Beauty NDCG@10 0.2722 0.2748 0.2818
Hit@10 0.4185 0.4223 0.4345

Game NDCG@10 0.4714 0.4711 0.4797
Hit@10 0.6952 0.6939 0.7087

Steam NDCG@10 0.5801 0.5731 0.5897
Hit@10 0.8058 0.7937 0.8103

within different ranges on different datasets. We will discuss the
effect of relative time intervals in Section 4.6.

4.6 Relative Time Intervals
Given our motivation for comparing the performance of models
which only have absolute positions or relative time intervals, we
modify Eqs. 15 and 16 to let TiSASRec only consider the relative
time intervals and not consider absolute positions.Wemodify Eq. 15
as:

zi =
n∑
j=1

αi j
(
msjW

V + rvi j

)
(15)

and modify Eq. 16 as:

ei j =
msiW

Q
(
msjW

K + rki j

)T
√
d

(16)

We remove the absolute position term in the two equations to
obtain a new model. We denote this model as TiSASRec-R. We view
SASRec [14] as a self-attention method which only considers the
absolute position (RQ2). We compare SASRec, TiSASRec-R and
TiSASRec by applying them on the six datasets discussed above.
For fair comparison, we use the same maximum sequence length
for SASRec as shown in Table 3. Results are shown in Table 5.

TiSASRec-R has better performance than SASRec on the Movie-
Lens, CDs&Vinyl and Beauty datasets, but not for the other three.
Overall, using only relative time intervals will have similar perfor-
mance. The main reasons that restrict the performance of TiSASRec-
R is that there are many identical timestamps in a user sequence
(some have only a single timestamp). Under this situation, TiSASRec-
R will degrade to self-attention without any positional information.
To alleviate this problem, we combine relative time intervals with
absolute positions. This way, TiSASRec incorporates richer item
relations to compute attention weights.

4.7 Influence of Hyper-parameters
Influence of Latent Dimensionality d . Figure 4 shows NDCG
for dimensionality d from 10 to 50 while keeping the other optimal

Table 6: Comparison of three timestamp processing meth-
ods (NDCG@10).

Dataset Method (1) Method (2) Method (3)

MovieLens-1m 0.5643 0.5658 0.5706
Amazon CDs&Vinyl 0.5001 0.4931 0.5047
Amazon Movies&TV 0.4838 0.4826 0.4974
Amazon Beauty 0.2692 0.2825 0.2818

hyperparameters unchanged. In most cases, a larger d leads to
better model performance. The value of d has limited influence
on TransRec. For the dataset ‘Amazon Beauty’, Caser, MARank,
TransRec have worse performance when d is larger.

Influence of maximum sequence length n. Figure 5 shows
the NDCG for maximum length n from 10 to 50 while keeping other
optimal hyperparameters unchanged. Performance improves when
considering longer sequences and eventually begins to converge.
SASRec converges earlier than TiSASRec.

Influence of maximum time intervals k considered. Fig-
ure 6 shows the NDCG of TiSASRec and TiSASRec-R. We choose
time intervals {1, 64, 256, 1024, 2048} for the ‘MovieLens’ dataset
and {1, 16, 64, 256, 512} for ‘Amazon CDs & Vinyl’. We can see that
TiSASRec has more stable performance under different maximum
intervals. TiSASRec-R achieves its best performance when k is cho-
sen properly and gets worse for larger k . Larger k means more
parameters need to be trained.

4.8 Personalized time intervals
In this section, we explore different processing methods of times-
tamps. We will discuss three kinds of methods:

(1) Directly use timestamps as the features. We will subtract the
minimum timestamps in the dataset to let all timestamps
start from 0.

(2) Using unscaled time intervals. For every user, we subtract
the minimum timestamps in the sequence to let users’ times-
tamps start from 0.

(3) Using personalized time intervals. For every time interval of
a user, these intervals are divided by the smallest intervals
as stated in Section 3.4.

Table 6 presents the results of different timetamps processing
methods. Please note that we don’t clip timestamps in the first two
methods. We highlight the highest NDCG with boldface. Method
(3) (i.e. Personalized time intervals) achieves the best performance
in the first three datasets.

4.9 Visualization
We use TiSASRec to predict the next item a user might interact with.
We then set all time intervals to be the same to get another predic-
tion. As shown in Figure 7, time intervals influence on prediction
results.

Figure 8 shows four heatmaps of average attention weights on
the first 256 time intervals. Note that when we calculate the average
weight, the denominator is the number of valid weights, so as to



Figure 4: Effect of the latent dimensionality d on ranking performance (NDCG@10).

Figure 5: Effect of maximum length n on ranking perfor-
mance (NDCG@10).

Figure 6: Effect ofmaximum time intervalsk on ranking per-
formance (NDCG@10).

avoid the influence of padding items in short sequences. From the
four heatmaps, we make the following conclusion:

(1) Small time intervals usually have larger weights than big
intervals which means more recent items have more impact
on the next items predictions.

(2) Dense datasets (e.g. MovieLens) need larger scope of items
than sparse datasets (e.g. CDs&Vinyl), as there’s a larger
green region on the left of MovieLens heatmap, and a yellow
region on the right.

(3) The heatmap of Amazon Beauty dataset doesn’t have an ob-
vious green or yellow region, possibly because this dataset

Figure 7: A prediction result of TiSASRec.

(a) MovieLens (b) CDs&Vinyl

(c) Amazon Beauty (d) Movies & TV

Figure 8: Visualizations of average attentionweights on time
intervals.

doesn’t have obvious sequential patterns. This explains that
why several sequential methods perform poorly on this
dataset.

5 CONCLUSION
In this work, we proposed a time interval aware self-attentionmodel
for sequential recommendation (TiSASRec). TiSASRec models the
relative time intervals and absolute positions among items to predict
future interactions. Extensive experiments on both sparse and dense
datasets show that our model outperforms state-of-the-art baselines.
We also explore various features of this model. We demonstrated
the influence of relative time intervals on next item prediction tasks.
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