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Abstract

Sensor metadata tagging, akin to the named en-
tity recognition task, provides key contextual
information (e.g., measurement type and lo-
cation) about sensors for running smart build-
ing applications. Unfortunately, sensor meta-
data in different buildings often follows dis-
tinct naming conventions. Therefore, learning
a tagger currently requires extensive annota-
tions on a per building basis. In this work, we
propose a novel framework, SeNsER, which
learns a sensor metadata tagger for a new build-
ing based on its raw metadata and some ex-
isting fully annotated building. It leverages
the commonality between different buildings:
At the character level, it employs bidirectional
neural language models to capture the shared
underlying patterns between two buildings and
thus regularizes the feature learning process;
At the word level, it leverages as features the
k-mers existing in the fully annotated build-
ing. During inference, we further incorporate
the information obtained from sources such as
Wikipedia as prior knowledge. As a result,
SeNsER shows promising results in extensive
experiments on multiple real-world buildings.

1 Introduction

Sensor metadata tagging aims at understanding the
context (e.g., sensor function and location) of a sen-
sor from its name, which is essential to any smart
building technologies (Wang et al., 2018). As il-
lustrated in Figure 1, sensor metadata is typically
a concatenation of esoteric abbreviations, each en-
coding specific information about the sensor, in-
cluding what they measure/control, where they are
located, how they are related to each other, etc. For
example, a sensor name SODA1R430 ART con-
veys: the building name (SOD), air conditioning
equipment ID (A1), room ID (R430), and the mea-
surement type, which is area room temperature
(ART). Running any application would require such
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Figure 1: Example sensor metadata from two buildings.
Sensor name tagging aims to partition a sensor name
into segments (shown in color) that encode key con-
textual information about sensors. Different buildings
adopt distinct vocabularies and naming conventions.

contextual information; for example, to detect over-
cooled rooms, one needs the temperature and the
target temperature set for each room.

Currently, learning a metadata tagger for a new
building in practice requires extensive human an-
notations, thus remaining a bottleneck in deploy-
ing smart building techniques widely and effi-
ciently (Wang et al., 2018). This is due to the fact
that sensor metadata is curated by building-specific
vendors, and that their naming conventions vary
drastically across buildings, as shown in Figure 1.
Anecdotally, annotating one sensor name may cost
several hundred dollars, and it takes weeks to do so
for one typical building with thousands of sensing
and control points. This manual approach is clearly
neither economical nor scalable, and it calls for an
automated solution.

As there usually exist buildings that are already
tagged, leveraging this information could poten-
tially expedite the tagging process in a new build-
ing. Thus, in this paper, we seek to answer the fol-
lowing question: Can we learn a sensor metadata
tagger for a new building based on its raw metadata
and some existing fully annotated building(s)?

Our problem faces unique challenges, de-
spite its similarity with named entity recognition



(NER) (Tjong Kim Sang and De Meulder, 2003).
First, lacking pre-processing tools (e.g., tokenizer)
for the building domain, we have only raw char-
acter sequences as input to work with (rather than
“word” sequences as input), and thus state-of-the-art
NER models (Akbik et al., 2018; Peters et al., 2018;
Devlin et al., 2018) do not apply. The choice of
taggers is therefore confined to only those working
at the character level. Secondly, the heterogeneity
of sensor names in source and target buildings hurts
the performance of existing character-level taggers
(e.g., Char-LSTM-CRF in Figure 2), resulting in
unsatisfactory results. Last, one building typically
has “only” a few thousand sensor names, and each
sensor name has fewer than two dozen characters;
however, there are more than 100 types for tagging.

Recognizing these challenges, we propose a
novel framework – SeNsER. At the character level,
together with the tagging objective function on the
source building, we train bidirectional neural lan-
guage models using sensor names from both source
and target buildings; we expect such co-training
to regularize the feature learning process for our
tagger so that the model can be better applied to
the target building. In addition, we propose to learn
k-mer (i.e., a substring of length-k) representations
of the source building and align them with those
of the target building, as there exist common char-
acter patterns across buildings similar to “words”
in human language. For example, “T” or “temp”
would almost always appear in sensors related to
temperature. These aligned k-mers complement
the language model as “word”-level information,
namely, what phrases look like in sensor names.
Moreover, during inference, because of a strong
connection between raw names and entity types,
we incorporate information (e.g., what an abbre-
viate stands for) obtained from resources such as
Wikipedia as prior knowledge to narrow the gap
between the limited input data and a large number
of target classes.

In summary, our major contributions are:

• We study an important problem of exploiting
existing annotated buildings to help train a sensor
metadata tagger for a new building.
• We propose a novel framework, SeNsER, which

leverages neural language models to regularize
the feature learning process and utilizes k-mers
from the source building to help annotate the tar-
get building, aided by prior knowledge extracted
from sources such as Wikipedia.

• We conduct extensive experiments on real build-
ings consisting of thousands of sensor names.
SeNsER achieves over 79% and 67% F1 in
chunking and tagging, respectively – a notable
13-point improvement in tagging over the best
compared method.

Reproducibility. We release our code and datasets
on GitHub 1.

2 Related Work

We review the literature from two fields, namely,
sensor name tagging and named entity recognition.
Sensor Metadata Tagging. The problem of tag-
ging sensor metadata has seen increasing interest
from the smart building and sensing communities,
mainly following the active learning paradigm (Set-
tles, 2009) to reduce manual labeling effort. These
methods iteratively select “representative” meta-
data examples for a human to annotate and pro-
gressively craft custom regular expressions (Bhat-
tacharya et al., 2015) or construct classical learning
models such as logistic regression (Hong et al.,
2015b; Ma et al., 2020) and conditional random
fields (Balaji et al., 2015; Koh et al., 2018; Lin
et al., 2019), in order to tag the sensor names. De-
spite the promising results, all these methods rely
on building-specific domain knowledge and human
effort, which often do not generalize across build-
ings.

Another attempt based on transfer learn-
ing (Hong et al., 2015a) leverages the information
from existing buildings to classify sensor measure-
ment type only, which is a sub-problem of sensor
tagging. It is primarily built upon sensory time-
series data and therefore cannot generalize to other
contextual information, such as the location and
relationship with others. By contrast, we aim to
understand all the information in the metadata.
Named Entity Recognition (NER). Our sensor
metadata tagging problem can be viewed as a kind
of NER task, while our tagging happens per char-
acter. Most of, if not all, NER models consume
words as the basic unit and detect entity boundaries
as a subset of word boundaries. However, in our
problem, due to the lack of pre-processing tools, the
input only contains raw character sequences. Such
difference makes most of the recent neural NER
models (Peters et al., 2018; Devlin et al., 2018; Ak-
bik et al., 2018; Huang et al., 2015; Lample et al.,

1https://github.com/JiachengLi1995/
SeNsER

https://github.com/JiachengLi1995/SeNsER
https://github.com/JiachengLi1995/SeNsER
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Figure 2: Neural architecture of SeNsER. Built upon Char-LSTM-CRF, SeNsER further equips it with three novel
components for effective cross-building metadata tagging: (1) co-training of language models using both source
and target buildings to guide feature learning, (2) k-mer-based “word”-level information to assist with alignment,
and (3) prior knowledge obtained from external sources such as Wikipedia to help inference.

2016; Ma and Hovy, 2016; Liu et al., 2018b; Kuru
et al., 2016) not directly applicable. After sifting
through compatible modules from these models,
the best applicable existing neural NER model be-
comes Char-LSTM-CRF, as we shall describe in
Section 4. It performs well under the intra-building
setting but poorly under our cross-building setting.

Our idea of introducing language models as reg-
ularization is inspired by LM-LSTM-CRF (Liu
et al., 2018b). LM-LSTM-CRF imposes a language
model objective on the NER’s training set as addi-
tional guidance for feature extraction. In this paper,
we further propose to train the language models
using both source and target buildings, so as to bet-
ter generalize the features learned from the source
building to the target building.

3 Problem Formulation

In this paper, we study the cross-building metadata
tagging problem. The input involves two buildings:
(1) a fully annotated source building, and (2) a new
target building with no annotation. The metadata
of a sensor is a sequence of characters, denoted as
X = (x1, x2, . . . , xM ), where xi (1 ≤ i ≤ M ) is
the i-th character and M is the length of the se-
quence. We denote the annotation of token xi as yi.
Similar to NER, the annotations follow the BIOES
labeling scheme (Ratinov and Roth, 2009), but at
the character level. We define a segment of sensor
name to be a substring expressing certain context
(e.g., building name, room, measurement type, etc)
about the sensor, as illustrated in Figure 1. Given

a segment in the sensor name, its beginning, mid-
dle, and ending characters are labeled as B-type,
I-type, and E-type, respectively. Segments
with only one character are labeled as S-, and char-
acters not belonging to any segment will be marked
as O. All BIES labels are followed by a particular
class. It is noteworthy that there are more than 100
classes for the different segments in sensor names,
such as building name, room, heating (a
sensor type), etc. Our goal is to learn a tagger for
the target building, which can partition the sensor
name into correct segments and classify them into
the right classes.

4 Char-LSTM-CRF

As mentioned earlier, the best applicable exist-
ing neural tagging model to our problem is Char-
LSTM-CRF, which was proposed as a strong base-
line in (Liu et al., 2018a). Since SeNsER builds
upon Char-LSTM-CRF, we briefly revisit this
model to be self-contained.

As illustrated by the top part of Figure 2, Char-
LSTM-CRF takes as input a character sequence
X = (x1, x2, . . . , xM ), and applies bidirectional
LSTMs to every character’s embedding, obtaining
fi and ri for the i-th character. Then, it gets the con-
textualized representation zi of the i-th character
by concatenating the two embedding vectors:

zi = [fi; ri].

Finally, it uses a Conditional Random Field (CRF)
layer (Lafferty et al., 2001) to capture the label



dependency, which defines the probability of gen-
erating the label sequence Y = (y1, y2, . . . , yM ),
namely,

P (Y |Z) =
∏M
j=1 φ(yj−1, yj , zj)∑

Ŷ ∈Y(Z)
∏M
j=1 φ(ŷj−1, ŷj , zj)

,

where Y(Z) is the set of all possible label
sequences, φ(yj−1, yj , zj) = exp(Wyjzj +
byj−1,yj ), and Wyj and byj−1,yj are the weight and
bias parameters in the CRF layer, respectively.

During training, we maximize the likelihood of
generating the ground-truth label sequences, hence
the following loss function:

LCRF = −
∑
i

logP (Y i|Zi),

where Y i is the label sequence and Zi is the em-
bedding for the i-th training example (i.e., sensor
name). For inference, we use the Viterbi algo-
rithm (Viterbi, 1967) to decode the best explanation
given Z.

5 Our SeNsER Framework

As shown in Figure 2, our SeNsER framework
builds upon Char-LSTM-CRF and further enhances
it with (1) cross-building language models as reg-
ularization, (2) k-mer alignment as “word”-level
complement, and (3) tailored decoding using a
domain-specific dictionary as prior knowledge.

5.1 Language Models as Regularization
To address the heterogeneity between the source
and target buildings, we propose to co-train the
character-level neural language models (Char-LMs)
on the raw sensor names from both buildings in ad-
dition to the tagging objective. Here, “co-training”
means that the LSTM modules are shared between
our bidirectional Char-LMs and the Char-LSTM-
CRF tagging model, and that their parameters will
be updated by two objectives together. We shall
note that we only incorporate the raw sensor names,
but not their labels for a target building in training
the language model (Char-LMs). This way, the
LSTM modules will also be regularized by the
raw sensor names in the target building, signifi-
cantly improving generalizability when we apply
the trained tagger to the target building.

The forward Char-LM defines the generative
probability of a character sequence as

Pfw(x1, x2, . . . , xn) =

n∏
i=1

Pfw(xi|x1, . . . , xi−1).

Denoting the representation after reading
x1, . . . , xi in the forward Char-LM as fLMi ,
Pfw(xi|x1, . . . , xi−1) can be written as

Pfw(xi|x1, . . . , xi−1) = Pfw(xi|fLMi−1 ).

We apply softmax to fLMi−1 to obtain this probability.
Inspired by previous work (Liu et al., 2018b), we
adopt a highway layer to further introduce nonlin-
ear transformation from fi to fLMi :

fLMi = H(fi) = t�g(WHfi+bH)+(1−t)�fi,

where� is element-wise product, g() is a nonlinear
transformation such as ReLU in our experiments,
WH and bH are two parameters in the highway
layer, and t = σ(WHfi + bT ) is called transform
gate and (1 − t) is called carry gate. Here σ() is
some nonlinear function such as sigmoid.

Similarly, one can define rLMi and Pbw(xi|rLMi+1 ).
Adding the two directions together, the loss func-
tion of the language model part becomes:

LLM=−
∑
i

(
logPfw(xi|fLMi−1 )+logPbw(xi|rLMi+1 )

)
.

The contextualized representation zi of character
xi is also revised accordingly. The fi and ri are
passed through two high-way units and become
fHi and rHi , respectively. Now, after enabling this
co-training, it becomes:

zi = [fHi ; rHi ]. (1)

Joint Optimization. We jointly optimize the Char-
LSTM-CRF and Char-LM via

L = (1− λ)LCRF + λLLM ,

where λ ∈ [0, 1] is a weight balancing the effect
of Char-LSTM-CRF and Char-LM on training. To
ensure the model is not overfitted in the source
building, in practice, we always start with λ = 1
and linearly decrease it as the training proceeds.

5.2 K-Mers as “Word”-level Complement
So far, SeNsER is solely built upon character-level
information. We observe that some k-mers (i.e.,
substrings of length-k) (Compeau et al., 2011) ex-
press the same meaning regardless of buildings,
e.g., “T”, “tmp”, or “temp” almost always appear
in sensor names related to temperature. Therefore,
we propose to leverage such meaningful k-mers to
complement the representation produced by the lan-
guage model (i.e., zi defined in Eq. (1)) as “word”-
level information.



Figure 3: Our Siamese Network for Abbreviation-
Phrase Matching Model.

Specifically, in the source building, we obtain
a k-mer vocabulary using the sensor names and
their annotations – every ground-truth segment in a
sensor name becomes a k-mer. We then apply word
embedding techniques (e.g. word2vec (Mikolov
et al., 2013), GloVe (Pennington et al., 2014)) to
learn representations of these k-mers. During train-
ing in the source building, we use its annotations to
align every character with the k-mer it appears in.
During inference in the target building, we match
a raw sensor name string to the k-mers in the vo-
cabulary by trying to cover as many characters as
possible with the most informative k-mer combi-
nations, where each k-mer is scored by its inverse
“document” frequency (IDF); in our context, a “doc-
ument” is a sensor name. Given a sensor name, for
its character xi, after aligning it with a k-mer we
incorporate this k-mer representation ki into zi ,
i.e.,

zi =
[
fHi ; rHi ;ki

]
.

Through a dynamic programming algorithm, we
can partition a raw string in the target building into
pieces and maximize the total IDF of each k-mer.
Characters that fail to be matched in this way will
be matched to “<unk>”.

5.3 Inference with Domain Knowledge

In order to accommodate more than 100 tagging
types, given the fact that a certain segment of a
sensor name indicates its measurement type, we
propose to develop a domain-specific abbreviation-
phrase matching model and employ it as additional
prior during CRF decoding. We next discuss (1)
how to build this matching model, and (2) how to
incorporate it into the CRF layer.
Abbreviation-Phrase Matching. To get the most

likely abbreviations of the type phrases, we propose
a new character-level text similarity model based
on Siamese Network (Bromley et al., 1993). The
structure of the similarity model is depicted in Fig-
ure 3. Specifically, type phrases and abbreviations
are embedded into a common latent space consider-
ing both the characters and their absolute positions.
Then, we apply two 1D convolutional neural net-
works (CNNs) to encode the context. To capture
the mutual information between two sentences, we
adopt the co-attention idea (Ye and Ling, 2019) and
apply it at the character level. After max-pooling,
we get the final representations for the type phrase
and abbreviation. We feed the concatenation of
these two representations into a Multi-Layer Per-
ceptron (MLP) with nonlinear activation to get a
similarity score.

In order to train this model, we scraped a domain-
specific abbreviation dataset from Wikipedia and
technical documents in the building domain, which
contains 574 abbreviations and 737 full names. We
split the dataset into train, validation, and test sets
with a 80%-10%-10% ratio of abbreviations, and
1:1 positive-negative pairs are sampled during train-
ing and testing. Following a prior work on learning
text similarity (Neculoiu et al., 2016), we adopt
the contrastive loss function for training. As bi-
nary classification evaluation (0.5 as a threshold),
our trained model can on average achieve 98%
test accuracy in matching an abbreviation to the
full phrase, demonstrating its efficacy. Finally, we
train a model on the entire abbreviation dataset we
scraped and then obtain a set of potential tagging
labels for each abbreviation with corresponding
similarity scores.

We release our code and dataset for abbreviation-
phrase matching on Github2.
Additional Prior in CRF Decoding. In order to
assign each character xi a similarity score, we con-
duct a substring search around it to assign it to an
associated abbreviation. Specifically, we check all
the substrings within ±2 positions around xi (in-
clusive), i.e., all substrings of x[i−2:i+2], and check
the similarity between these substrings and differ-
ent tagging labels. The longest and most similar
substring match will be assigned as the associated
abbreviation for xi. The similarity scores between
this abbreviation and tagging labels are then propa-
gated to sim(xi, yi). We incorporate this similarity

2https://github.com/JiachengLi1995/
Character-level-text-similarity

https://github.com/JiachengLi1995/Character-level-text-similarity
https://github.com/JiachengLi1995/Character-level-text-similarity


into the CRF decoding stage as follows:

P (Y |Z)=
∏M
j=1 φ(yj−1,yj ,zj)·sim(xi,yi)∑

Ŷ ∈Y(Z)

∏M
j=1

φ(ŷj−1,ŷj ,zj)·sim(xi,yi)
.

The Viterbi algorithm (Viterbi, 1967) still applies
without any computational overhead.

6 Empirical Evaluation

In this section, we empirically evaluate SeNsER
and compared models on real-world buildings. We
first introduce the datasets and experimental set-
tings. Then, we present chunking and tagging re-
sults. Finally, we present some case studies about k-
mer embedding and typical mistakes of our model.

6.1 Datasets

To evaluate SeNsER, we collect the sensor names
from three office buildings on two different cam-
puses, and the building names are anonymized as A,
B, and C. The ground-truth labels of sensor names
are created by the building vendors, which we sub-
sequently convert to the character-level IOBES la-
bels. The details of each building are summarized
in Table 1.

Buildings A and B are on the same campus con-
tracted with the same vendor, thus exhibiting simi-
lar naming conventions; yet their sensor names still
contain unique tags due to different sensors and
equipment deployed, and variations also exist even
in the “codes” used for the same type of sensors, as
illustrated in Table 1. Since it is impossible for the
model to predict for classes out of the training set,
we thus only keep the overlapping classes between
a pair of source and target buildings in evaluation.
In other words, given a pair of buildings, if a class
exists only in either of the two buildings, we will
mark it as an “other” class. As a result, a total of
70 classes, consisting of 69 regular classes and one
“other” class, remain in our experiments between
buildings A and B.

Building C is located on a second campus and
is commissioned by a different vendor than A and
B’s; we use it to examine the generalizability of
our method. There are only 4 classes in building
C that appear in either building A or B, so there is
not much difference between chunking and tagging.
Therefore, we only evaluate chunking when train-
ing models based on building A and B and testing
them on building C.

6.2 Metrics and Compared Methods

We evaluate the performance of SeNsER with
regard to chunking and tagging using the
precision, recall, and F1 scores, similar to
NER tasks. Specifically, for each sensor
name, we get a few predicted triplets, i.e.,
(positionbegin, positionend, category), and only
when both the position and category exactly match
the ground-truth annotations does it count as a cor-
rect extraction. For chunking, we only consider the
positions. Mathematically, we compare two sets of
triplets, i.e., the predicted set and the ground-truth
set. True positive is the intersection between the
two sets. The remaining triplets in the predicted
and ground-truth sets are considered as false posi-
tive and false negative, respectively.

We compare SeNsER with the following meth-
ods as baselines:
• CRF. As the most straightforward baseline, we

compare SeNsER with a standard CRF which is
trained on the source building and applied to the
target building. Particularly, 6 features are used
in total, including is xi a digit, is xi a letter, is
xi±1 a digit, is xi±1 a letter.
• Char-LSTM-CRF. As we described in Sec-

tion 4, it first applies bidirectional LSTMs to
every character’s embedding and further feeds it
into the CRF layer, and finally outputs labels for
each character.
As a sanity check, we also examine two meth-

ods:
• Delimiter. Sensor names usually contain de-

limiters such as “-” and “.”. Therefore, as a
straightforward option for chunking, we segment
sensor names at the positions of delimiter and
then calculate the precision, recall, and F1.
• Dictionary (Dict). For this method, we use the

dictionary created in §5.3 and decode the type of
label using the Viterbi algorithm.
We also evaluate ablations of our model.

SeNsER-Dict only keeps the use of the dictionary
comprised of abbreviation-phrase pairs during in-
ference by removing the k-mer alignments from
SeNsER, and likewise, SeNsER-Kmer keeps only
k-mer alignments by removing the use of the dictio-
nary. We shall note that, technically, Char-LSTM-
CRF is also the ablated version of SeNsER with
none of the proposed components used, namely,
co-training, k-mers matching, and dictionary as
prior.

We only use Char-LSTM-CRF as our NER



Table 1: Statistics of the buildings from two campuses used in our experiments. Buildings A and B are from the
same campus, while C is on a different one. We also present example names for room temperature sensor in the
three buildings used in our study: variations exist even in buildings (A and B) by the same vendor.

Building #Sensors #Classes Name Length Sensor Name

A 4,954 157 11 ∼ 14 EBU3B.RM-B215..ZN-T
B 4,357 134 10 ∼ 17 AP&M.RM-1011.TEMP
C 2,551 63 7 ∼ 31 SDH SF1 R282 RMT

Table 2: Cross-building tagging and chunking performance (%). “X→ Y” denotes to train a tagger on building X
and test on building Y. All results are averaged over 5 runs. We omit the standard deviations as they are all ≤ 2%.

Building A → Building B Building B → Building A
Chunking Tagging Chunking Tagging

Methods Precision Recall F1 Precsion Recall F1 Precision Recall F1 Precsion Recall F1

Delimiter 54.10 34.65 42.24 - - - 46.24 31.94 37.78 - - -
Dict 45.61 14.11 21.56 36.12 10.88 16.73 30.41 7.18 11.62 25.10 5.89 9.54
CRF 58.09 58.32 58.12 44.35 55.31 49.13 58.75 60.32 59.44 37.63 38.95 38.26

CRF-Kmer 58.12 81.47 67.59 52.41 69.57 59.82 50.53 40.46 44.80 47.92 34.80 41.62
CRF-Dict 73.64 74.81 74.11 68.10 70.50 69.18 65.70 61.56 63.56 54.47 47.93 50.99

Char-LSTM-CRF 84.29 75.31 79.54 65.48 58.27 61.66 79.82 74.13 76.86 43.47 51.89 47.37

SeNsER-Kmer 73.22 77.57 75.25 61.19 73.73 66.87 63.02 62.62 62.81 58.29 53.84 55.81
SeNsER-Dict 86.26 89.14 87.68 70.60 71.14 70.87 67.77 73.03 70.30 64.80 56.42 60.32

SeNsER 86.81 89.52 88.15 66.84 77.89 71.78 66.08 76.35 70.70 59.72 67.27 62.55

model because we study char-level tagging with
limited training data. Other models (e.g., BERT)
typically require large-scale corpus for pretraining
and word-level input, which are not available in the
building domain we study.

Regular expression (regex) could be a solution
to our problem, but they need to be exhaustive in
covering all the possible patterns, which requires
deep building-specific domain knowledge and sig-
nificant manual effort at great costs to create on
a per-building basis. Moreover, regex for tagging
patterns cannot transfer across buildings, which is
our goal in this work. Therefore, regex is neither
an economical nor scalable solution.

For a fair comparison, all baselines use the same
amount of human labels. Because of the consider-
able amount of human effort needed for regexes,
we do not include it for comparison in this work.
The Delimiter method can be viewed as a special
kind of regexes, with a minimum amount of human
effort.

6.3 Experimental Setup

During training, 80% of the sensor names in the
source building are used as the training set and the
remaining 20% is used as a development set; test-
ing is performed on the sensor names in the target
building. Mini-batch stochastic gradient descent
with momentum is used for training all the neural

models. For all three models, the batch size, mo-
mentum, and learning rate are set to 10, 0.9 and
ηt =

η0
1+ρt

, where η0 is the initial learning rate and
ρ = 0.05 is the decay ratio. We apply dropout with
a ratio of 0.5. Models are trained for a maximum
of 200 epochs, and early stop happens when the
current best F1 score on development set does not
increase for 15 epochs.

The dimension of randomly-initialized character
embedding and character-level LSTM state is set to
30 and 150, respectively. For word embedding of k-
Mers, we apply word2vec (Mikolov et al., 2013) on
these “words” and the dimension of embedding is
set to 30. Other word embedding techniques (e.g.,
Glove (Pennington et al., 2014)) also work for this
part. In language models, we set the dimension of
LSTM state to 300. For the parameter λ, which bal-
ances the effect of Char-LM and Char-LSTM-CRF
during training, it is initialized to 1 and decreases
along the training process until it reaches a partic-
ular minimum value. This way, during the multi-
task training of Char-LM and Char-LSTM-CRF,
the model in the early epochs will focus more on
learning an effective LM for understanding the se-
quence characteristics, which benefits the learning
of Char-LSTM-CRF in the later stage of training
and transfer learning.



Table 3: Top-5 similar k-mers to query k-mer based on its embedding.

k-mer Explanation k-mer Explanation k-mer Explanation

Query htg heating co CO2 ef exhuast fan

1 clg cooling level level ahu air handling unit
2 sup supply dasp discharge air setpoint e exhaust air
3 vp velocity pressure box box st status
4 rh reheat vp velocity pressure cm command
5 enbl enable ll low limit speed speed

Table 4: Chunking performance on building C of tagger
trained using data from both building A and B.

Precision Recall F1

Delimiter 49.31 27.48 35.29
Dict 39.54 11.42 17.73
CRF 79.19 66.54 72.32

Char-LSTM-CRF 56.68 50.75 53.49

SeNsER 78.96 77.44 78.18

6.4 Cross-Building Performance

We summarize the cross-building chunking and
tagging performance in Table 2. In general, our
experimental results suggest that transferring from
A to B is better than B to A. The main reason is that
building A contains more types of metadata labels
(i.e., 157) than building B (i.e., 134). SeNsER
would be more effective if trained on a dataset
with various sensors and applied to a dataset with
relatively fewer types of sensors.

Besides, we observe that the majority of cor-
rect chunks obtained by the delimiter method are
the building names, which appear almost in all the
metadata sequences at the beginning, followed by a
delimiter. However, room or floor segments usually
contain delimiters such as “ ” and “-”, and thus
will be incorrectly segmented by this method. As a
sanity check, we also directly apply the dictionary
built upon online documents such as Wikipedia,
which consists of abbreviation codes used in the
building domain. As the dictionary is not exhaus-
tive, solely matching based on the abbreviations in
the dictionary can only uncover a small fraction of
segments, hence the limited chunking and tagging
results.

As a common solution to NER, CRF with hand-
crafted features achieves decent chunking results
(58.78% F1 on average), yet struggles with tagging

(43.70% F1 on average), since the “codes” used
in building A and B vary. To demonstrate the effi-
cacy of the proposed k-mer-based alignments and
dictionary as prior knowledge, we also incorpo-
rate them into the standard CRF as CRF-Kmer and
CRF-Dict. As we see from the results, both can
enhance a standard CRF in chunking and tagging.

Char-LSTM-CRF significantly improves over
CRF by learning the features to represent the gen-
erative pattern in sensor names, achieving 78.20%
and 54.52% on average in F1 for chunking and
tagging, respectively. Compared to Char-LSTM-
CRF, SeNsER-Kmer additionally employs the k-
mer-based alignment procedure to help identify
segments in sensor names in the target building.
We see that it improves tagging by 6.83 points in
F1 on average. On another front, SeNsER-Dict
incorporates as prior knowledge during inference
the dictionary of abbreviations-phrases pairs. Simi-
lar to what we have observed for the case of CRF,
this knowledge clearly benefits both chunking and
tagging on the two buildings. Finally, employ-
ing both the k-mer alignments and dictionary of
abbreviation-phrase pairs, SeNsER considerably
outperforms the best baseline by 8.61 points in
chunking on building B, and by an average 12.65
points in tagging on both buildings.

The superior performance of SeNsER confirms
the synergy between language models for captur-
ing contextual information and k-mers for substring
alignments in different buildings as well as a dictio-
nary as prior knowledge (especially with a limited
vocabulary).

6.5 Case Study

Similar K-mers. K-mers have demonstrated their
power in recognizing the class of name segments,
i.e., tagging. Here, we present a case study about
the learned k-mer embedding results. It will pro-
vide some insights into the usefulness of our k-mer



alignment. In Table 3, we present three random k-
mers from our vocabulary and retrieve their top-5
similar words according to cosine similarity. The
results are reasonable, containing semantically cor-
related k-mers. For example, heating equipment
commonly pairs with the corresponding cooling
equipment to condition a room/zone, and involves
reheating, measurements of supply airflow,
and velocity pressure.
Typical Mistakes. The most common mistakes in
our inference occur in the building name segments.
Our SeNsER can effectively learn the common fea-
tures of different buildings such as temperature and
equipment operating status. However, the building
names vary a lot in different buildings and share no
similar features; for example, recall the examples
in Table 1, the building name phrases are EBU3b,
ap&m, and SDH. Without human input, it is diffi-
cult for our model to correctly infer the meaning
of such segments. However, as a possible future
direction to pursue, based on the frequency, we
could infer with a high probability that a segment
is likely to be the building name, and therefore
query a human for a one-time input to label all
such segments.

6.6 Generalizability

We also examine the generalizability of our method,
i.e., how it would perform when applied to a build-
ing with a completely distinct vocabulary and nam-
ing convention. In particular, we train a tagger
using the sensor names and annotations in building
A and B and apply it to building C.

Note that, this is an extremely difficult task:
Building A and B still share similar naming con-
ventions (recall the examples in Table 1), despite
moderately varied vocabulary; however, by con-
trast, building C almost completely differs in the
naming convention and vocabulary. For example,
“room temperature” is denoted as “ZN.T” in
A and B but as “RMT” in C; in addition, due to
the different vendors used, the types of equipment
installed also vary significantly in Building C, com-
pared to Building A and B. Due to the disparate
vocabularies, tagging Building C based on the in-
formation in A and B is nearly impossible, and we
thus only take the prefixes of the tags produced by
the tagger (i.e., B-, I- prefixes) to evaluate the
chunking results.

The results are summarized in Table 4.
Delimiter-based chunking method can achieve

35.29% in F1, with the hits mainly being the first
segments of the metadata string denoting building
names, which do not vary in the building. It is note-
worthy that Char-LSTM-CRF performs worse than
CRF, which indicates that learning solely based on
data from buildings A and B may even hurt the per-
formance on building C. SeNsER is able to score a
78.18% F1, best among all, in spite of the distinc-
tion between the source and target. Upon closer in-
spection, due to the employed Char-LMs, SeNsER
can recognize the segments for sensor types and
room IDs correctly.

7 Conclusions and Future Work

In this paper, we study the problem of automated
cross-building sensor metadata tagging, a key to
enabling any smart building applications. Capital-
izing on the intuition that sensor names are cre-
ated following some underlying rule, though vary-
ing across buildings, we design SeNsER. SeNsER
builds upon Char-LSTM-CRF and guides the sen-
sor name feature learning using both source and
target buildings, well preparing them for interpret-
ing the metadata in the target building. We fur-
ther leverage a k-mer-based matching procedure
to provide “word”-level information, as well as
a dictionary comprised of prior knowledge about
sensor names, to boost the tagging performance.
Promising experimental results demonstrate the
synergy among neural language models, k-mers-
based alignments, and the use of prior knowledge.

As future work, we plan to further collect more
domain-specific text data, e.g., sensor datasheets,
which helps provide more information about dif-
ferent naming conventions and abbreviations. We
then can integrate such information into our model
to make it generalize better.
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